HFMA - October 2024

AI for Healthcare Administration

Our Vision

To elevate financial clarity in collaboration with payers and providers through cost saving and cutting-edge solutions.

Founded 2018

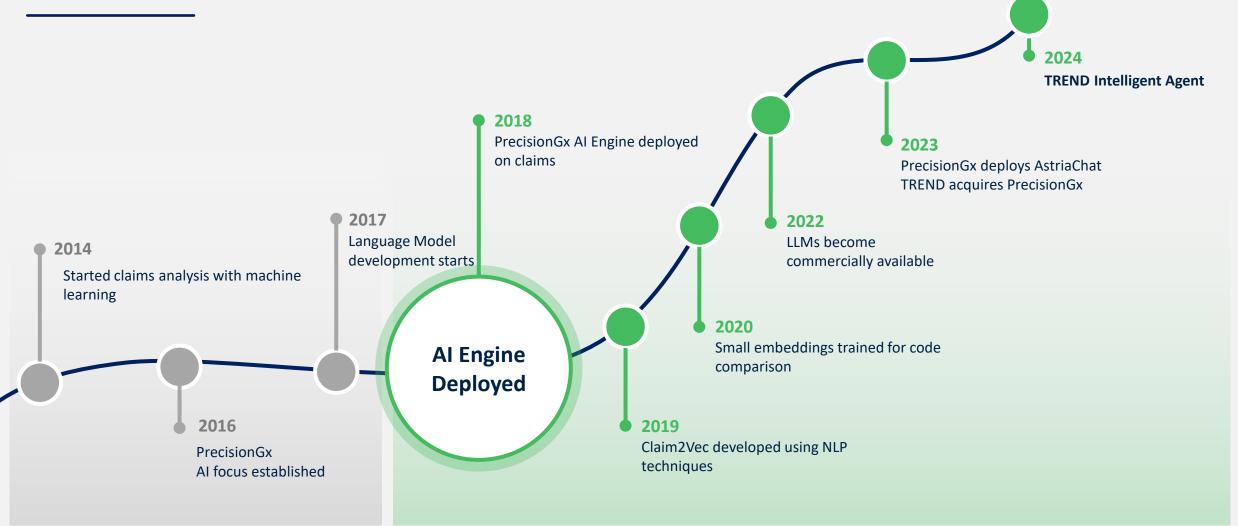
1,000+ Health Systems & Hospitals Served

Reviewed 1.9M Claims worth \$8B

Overturned 109K claims to Recover \$1.2B

\$3B in credit balances recovered

TREND's Partners


Quick Al Intro

Agenda

Who are we?
Why Al now?
What is possible?

A decade of Al

PRIOR EXPERIENCE

AI Focused PLATFORM

A brief history of AI in Healthcare

Prior to 2012

Limited effectiveness

- •Rule based medical decision support
- Statistical models for patient outcomes and disease diagnosis
- Genomic data analysis (limited)

2012

AlexNet Revolution

- Discovered the effectiveness of scaling neural networks
- Created significant opportunities in diagnostic radiology

2013

IBM Watson Health - Oncology

- High powered reasoning engine
- •General purpose machine learning tool
- Contract with MD Anderson terminated in 2015

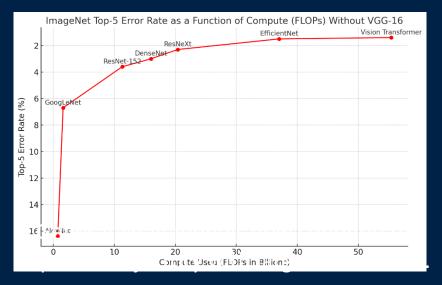
2014

Image based tools

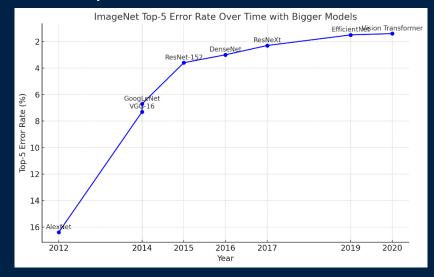
- •(2014) Zebra Medical Vision Struggled to gain traction
- (2016) DeepMind's AI for Retinal Disease Diagnosis
- Significant improvement in what's possible

2017

Reinforcement learning


- Ability to continuously learn from user feedback
- (2018) AlphaZero Deep Mind series of models (team won Nobel Prize for protein folding model)

2017


Transformers

- Able to handle large text data sets.
- •Improved transcription tools

As computation increases...

... performance also increases.

A brief history of AI in Healthcare

Prior to 2012

Limited effectiveness

- •Rule based medical decision support
- •Statistical models for patient outcomes and disease diagnosis
- Genomic data analysis (limited)

2012

AlexNet Revolution

- Discovered the effectiveness of scaling neural networks
- Created significant opportunities in diagnostic radiology

2013

IBM Watson Health - Oncology

- High powered reasoning engine
- •General purpose machine learning tool
- Contract with MD Anderson terminated in 2015

2014

Image based tools

- (2014) Zebra Medical Vision Struggled to gain traction
- (2016) DeepMind's AI for Retinal Disease Diagnosis
- Significant improvement in what's possible

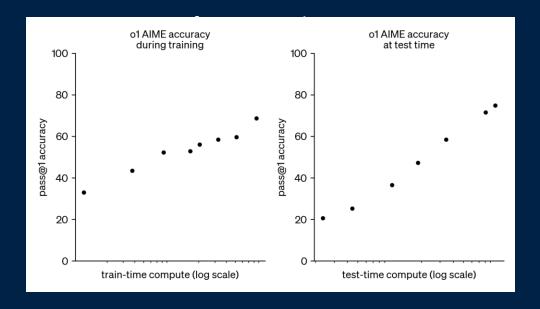
2017

Reinforcement learning

- Ability to continuously learn from user feedback
- (2018) AlphaZero Deep Mind series of models (team won Nobel Prize for protein folding model)

2017

Transformers


- Able to handle large text data sets.
- •Improved transcription tools

2022-Today

Transformers with powerful Reinforcement Learning and massive compute.

- Generative Al
- ChatGPT
- Claude
- Gemini / MedPaLM
- Etc.

Generative AI models now continue the upward trajectory with larger resources...

AI Challenges

In Depth Review: IBM Watson Health

General-Purpose Technology Challenges

 "In essence, Watson was not particularly attractive as a ubiquitous creation, but it needed to be linked to specific uses – and this is where the challenges emerged."

Closed Commercialization

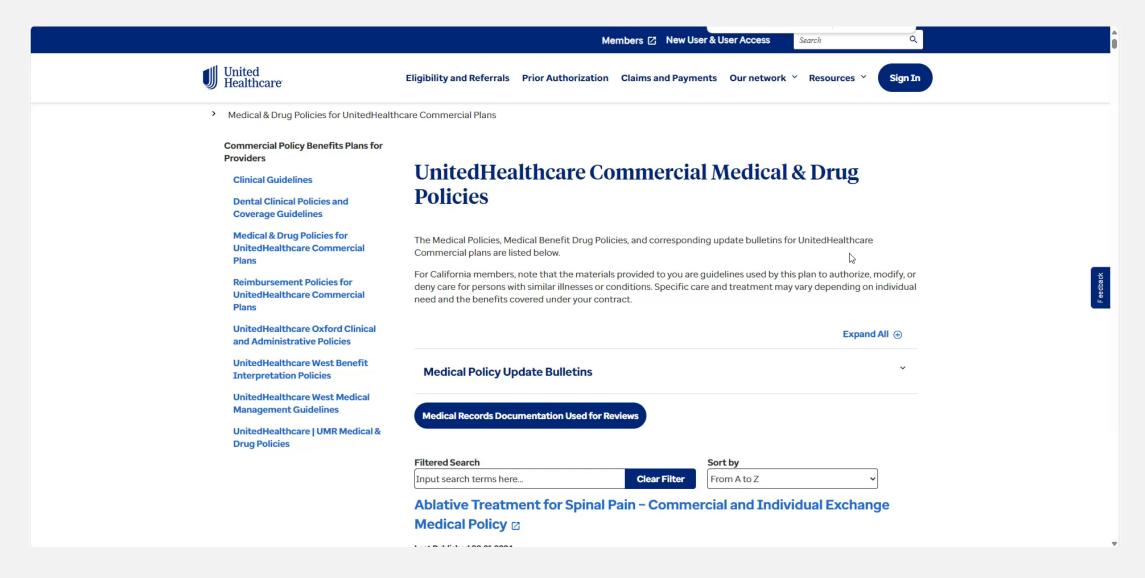
• "The Watson for health is still closed... there is [not] anything open there for developers to go and access it."

Data and Integration Issues

• "IBM Watson requires significant data to perform its technical tasks, so extensive data access is required."

Limited External Engagement

 "The decision of selling Watson Health to hospitals and hospital administrators was top-down, which restricted Watson to be in the hands of a limited number of appointed physicians."


Complex systems

• "Al is not one application. Al is a series of statistical models... need to be monitored for bias, need to be... constantly tended to like an unruly plant that continues to grow and get crazy."

Other Healthcare AI Companies with large amounts of invested capital.

Startup Name	Founded	Funding Raised	Focus	
Health Catalyst	2008	\$392 million (incl. IPO)	Al-powered healthcare data analytics	
Ayasdi	2008	\$106 million	Topological data analysis for healthcare	
Olive.ai	2012	\$902 million	Al-driven healthcare automation	
Lumiata	2013	>\$45 million	Al for healthcare risk and cost prediction	
Zebra Medical Vision	2014	>\$57 million	Al for medical imaging analysis	
Machinify	2016	\$13 million	AI for healthcare cost management	
Aidoc	2016	\$264 million	AI-based radiology workflow and triage tools	

What does today's Gen AI look like for our space?

Why AI Now

What's changed with Gen Al

Hyper customizable

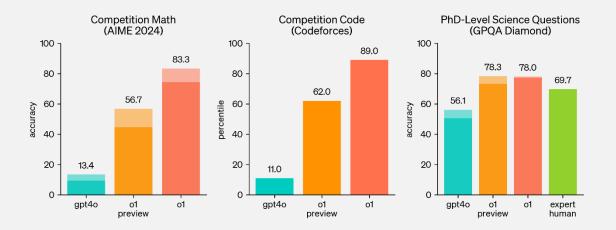
Each interaction with the model is hyper specialized to the context that you provide it.

Open Access

There is very little vendor lockin to one foundational model

Knowledge is built in

Massive amount of data is already incorporated into the models training


Easy to get started

This does not require an executive level sponsorship to get started.

Simple interface

The interface can be as simple as text input into the model, text output.

Our results show that GPT-4, without any specialized prompt crafting, exceeds the passing score on USMLE (United States Medical Licensing Exam) by over 20 points and outperforms earlier general-purpose models (GPT-3.5)

- Capabilities of GPT-4 on Medical Challenge Problems, 3/20/2023

Cost per 1M Input Tokens for gpt-4 series models

Applications of GenAl Now

Application Types

- Medical Transcription
 - Ambient note-taking
- Clinical Documentation Automation
 - Note summarization
- Operational Efficiency
 - Provides coding suggestions based on clinical notes
- Documentation Research
 - Policy analysis

Questions to ask

- What unique data sources do you leverage?
- How do you integrate with our existing systems?
- At what point does the human enter the process?

Current Capabilities

- 1. Chat
 - 1. Q&A
 - 2. Summarization
 - 3. Transcription
- 2. Reasoning
 - 1. Following step by step procedures
 - 2. Crafting arguments
 - 3. Complex calculations

Future Capabilities

- 3. Agent
 - 1. Taking actions in the real-world
 - 2. Behaving with no supervision
- 4. Innovate
 - 1. Making new discoveries from primary literature
 - 2. Generating new ideas
- 5. Organization
 - 3. Running entire processes

Using AI for Clinical Appeals

Can our AI agent analyze an insurance denial letter, review the medical record, and draft an appeal letter?

Data

Start with inputs and output content

Confirm denial and chart data, timing/availability, and output letter specifications.

Inputs

- Denial letter
- Physician notes
- Laboratory reports
- Claim
- Policy guidelines

Outputs

- Appeal letter background, rationale
- Provider/Payer-specific formatting

Capabilities

Make the AI an Agent

Give the AI the same tools and features as the human team. Allow it to take steps, analyze, research and summarize.

Functions

- Read and re-read denial
- Search guidelines
- Review medical record documents iteratively
- Create library of summaries and specific data points from the case

Measure

Compare quality to real outputs of human team

Measure performance of the AI system to real outputs of human team, blinded, controlled where possible.

Compare

- Measure quality of AI generated and human generated content blinded and on same scale
- Run the statistical tests
- Gather and review qualitative feedback
- Confirm if performance is as good, better, or other

Deploy

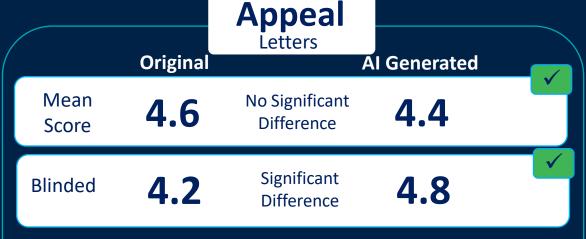
Enhance human efforts rather than replace

Deliver AI outputs to a human-in-the-loop to confirm quality, use appropriately.

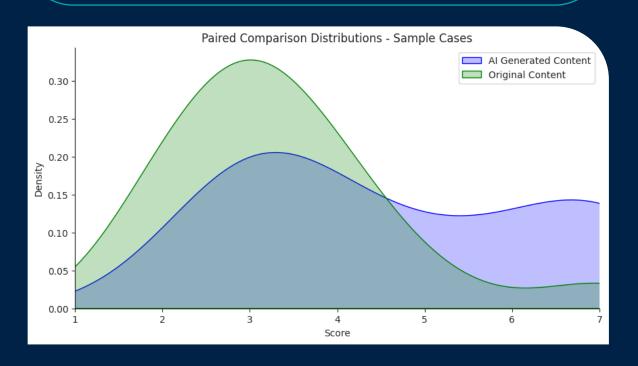
Live

- Deliver AI generated letters to clinical reviewers and analysts to review.
- Use all or components of AI content to enhance productivity
- · Continuously track performance, quality
- Measure impact on overall productivity

Appeal Letters


Letters written by TREND Intelligent Agent (AI system) compared to original successful appeal letters.

Tracking Data


 $30 - 90 \rightarrow 15$ minutes minutes minutes

\$100+ - < \$5

Significant efficiency and cost improvements as a productivity enhancement for existing teams.

Intelligent Agent letters confirmed to be equivalent or better to Original Letters on average.

Using AI for Policy Compliance

Can our AI agent understand payer reimbursement and medical policies to identify potential claim/payment issues?

Data

Start with inputs and output content

Provide a policy knowledge base, access to policy sites, and the capability to take in a description or search from a user.

Inputs

- Policy/Concept description
- Database schema and connection information

Outputs

- Description of logic and reference information
- Algorithm to identify compliance
- Identified claims

Capabilities

Make the AI an Agent

Give the AI the same tools and features as the human team in developing algorithms. Allow it to test logic, research reference information, review results.

Functions

- Review and research policy.
- Write and test algorithms.
- Review and deliver structured results.

Measure

Compare quality to real outputs of human team

Measure performance of the AI system to real outputs of human team, blinded, controlled where possible.

Compare

- Measure quality of AI generated analysis against findings of human generated algorithms
- Test matching level
- Gather and review qualitative feedback from SME analysts

Deploy

Enhance human efforts rather than replace

Deliver AI outputs to a human-in-the-loop to confirm quality, use appropriately.

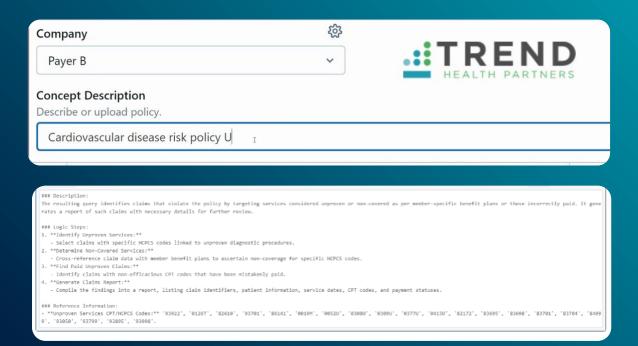
Live

- Use as a tool to enhance new datamining and algorithm development.
- · Continuously track performance, quality
- Measure impact on overall productivity

Policy Review

Identifying claims for compliance with TREND Intelligent Agent connecting into datasets.

Consume policy text or guideline description.


 In this case, we pull from a payer website or policy already added to TREND IA knowledge base.

Analyzes policy, gathers reference information, coding, other filters or triggers.

 Taps knowledge sources to write and test different permutations of logic and can score claims for likelihood.

Identifies claims in or out of compliance

- Data mines large claim dataset for potentially non-compliant claims/payments.
- Or can review individual claim

1	oZ7d9tw9	04a5o949-bZ2e-43fc-9te9-bdc4w0ff01e8	Z	20o4-Z8w06t1d:28:00	d453o021-9Z9e-4ec4-9t6d-bdc4w0feae61
2	AX7c9NC9	A4a50949-bd2e-4Xfc-93e9-b1c4T0Nf01e8	Р	A024-08X06 15c2NT00	A453a021-909e-4Xc4-976d-b1c4T0Neae6*
3	4G38BI4H	04a50949-Bd3e-43fl-93e9-b1c4H0ff01G8	C	2024BG8-36 15:18:S0	d453a021-B03e-4ecl-976d-b1c4H0feaeG1
4	46NO9tnZ	04a50949-bd2ew43fc-y3N9-b1cO0Zff01e8	d	202w-08-06N15tZ8:0O	d453a021-909ew4ec4-y7Nd-b1cO0Zfeae6
5	4o7uRNa9	K4a50949-bd2e-b3fc-9Xe9-b1c4Z0ff0Ae8	Z	2024-08o0A 1u:a8R00	K453a021-909e-bec4-9X6d-b1c4Z0feaA61
6	O6D8gbC9	04a509X9-bd2e-43fc-9beP-b1c4USff01e8	A	g024-08-06Db5:P8:U0	d453a0X1-909e-4ec4-9b6P-b1c4USfeae61
7	4w7q9xMm	04a50949-bd20w43fc-93e9-x1c40qMf01e8	Q	2024-0M-06 15:ymw	d453a021-9090w4ec4-976d-x1c40qMeae6
8	rGeK964m	04a50249-bG2e-43fcK93e9-b1c40eff01m8	a	2074e28-06 65:18:00	d453a221-9G9e-4ec4K976d-b1c40efeaem
9	873FNY8i	abacE824-91c8-4YbF-9b8f-i1c400ff01e8	c	20Qy-0f-U6 15:28R00	d453E821-909e-4YcF-976d-i1c400feae61
10	4dOxx6w3	abac9124-91c8-O5b4-9b8xgb1cd0Aff01e8	T	2024R08-0w 15D2o:0w	d453a021-909e-Oec4-976xgb1cd0Afeae61
11	fi3C56fX	fbac9p24-91c8-4ib4-9b8f-b1c400fX01eC	5	2F24-08-06 a5P28:OS	f453ap21-909e-4ic4-976d-b1c400fXae6C
12	4Bd196Y3	abas9124X91c8-45b4-9b8f-b1c400ff01J8	1	20p4-08i06 16:280C0	d45sa021X909e-4ec4-97Bd-b1c400feaeJ1
13	4reXK6x3	abac9124-91e8-45bF-9b8X7b1c400fK01e8	Н	2s24X0W-06915:28:J0	d453a021-90ee-4ecF-976X7b1c400fKae61
14	47FP26o9	abac9124-91c8-N5b2-9b8f-b1T400fD01P8	S	2024Fe8-06 X5:2K:70	d453a021-909e-Nec2-976d-b1T400fDaeP1
15	C73ni6OB	khar9124-n1c8-40h4-9h8f-h1csm0ff01a8	R	202N-08-26 15T2D-0P	k453a021-d09e-40r4-976d-h1rsm0feae61

What will this mean for us?

Will AI become:

- "... a new assault on revenue"
- "... an arms race"
- "... Battle of the bots"
 - Health System and RCM executives

If AI just becomes a new battleground between payer and provider, it probably won't meaningfully impact administrative burden.

Reduce administrative burden on clinicians

 Automate case/denial analysis, follow up and communication between payers and providers.

Navigate diverse policies

 Help to eliminate the denial or conflict in the first place by automating policy analysis and application.

Use automation and broader knowledge base to predict issues

 Use automated analysis and agentic behaviors to create a broader knowledge based on new or problematic payer policies, denial areas that continue to strain teams with complexity.

Our Vision

To elevate financial clarity in collaboration with payers and providers through cost saving and cutting-edge solutions.

Founded 2018

1,000+ Health Systems & Hospitals Served

Reviewed 1.9M Claims worth \$8B

Overturned 109K claims to Recover \$1.2B

\$3B in credit balances recovered

TREND's Partners

